Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Transfus Apher Sci ; : 103929, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38658294

ABSTRACT

Granted with a potent ability to interact with and tolerate oxidative stressors, RBCs scavenge most reactive oxygen and nitrogen species (RONS) generated in circulation. This essential non-canonical function, however, renders RBCs susceptible to damage when vascular RONS are generated in excess, making vascular redox imbalance a common etiology of anemia, and thus a common indication for transfusion. This accentuates the relevance of impairments in redox metabolism during hypothermic storage, as the exposure to chronic oxidative stressors upon transfusion could be exceedingly deleterious to stored RBCs. Herein, we review the prominent mechanisms of the hypothermic storage lesion that alter the ability of RBCs to scavenge exogenous RONS as well as the associated clinical relevance.

3.
Transfus Apher Sci ; 62(6): 103827, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37793959

ABSTRACT

Donor sex can alter the RBC 'storage lesion' progression, contributing to dissimilarities in blood product quality, and thus adverse post-transfusion reactions. The mechanisms underlying the reduced sensitivity of female RBCs to storage-induced stress are partially ascribed to the differential effects of testosterone, progesterone, and estrogen on hemolytic propensity. Contributing to this is the increased proportion of more robust, biologically 'young' subpopulations of RBCs in females. Herein, we discuss the impact of sex hormones on RBCs and the relevance of these biological subpopulations to provide further insight into sex-dependent blood product variability.


Subject(s)
Blood Preservation , Erythrocytes , Humans , Female , Hemolysis , Blood Donors
4.
Proc Natl Acad Sci U S A ; 120(32): e2115616120, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37494421

ABSTRACT

Transfusion of red blood cells (RBCs) is one of the most valuable and widespread treatments in modern medicine. Lifesaving RBC transfusions are facilitated by the cold storage of RBC units in blood banks worldwide. Currently, RBC storage and subsequent transfusion practices are performed using simplistic workflows. More specifically, most blood banks follow the "first-in-first-out" principle to avoid wastage, whereas most healthcare providers prefer the "last-in-first-out" approach simply favoring chronologically younger RBCs. Neither approach addresses recent advances through -omics showing that stored RBC quality is highly variable depending on donor-, time-, and processing-specific factors. Thus, it is time to rethink our workflows in transfusion medicine taking advantage of novel technologies to perform RBC quality assessment. We imagine a future where lab-on-a-chip technologies utilize novel predictive markers of RBC quality identified by -omics and machine learning to usher in a new era of safer and precise transfusion medicine.


Subject(s)
Blood Preservation , Microchip Analytical Procedures , Blood Transfusion/instrumentation , Blood Transfusion/methods , Humans , Blood Preservation/methods , Lab-On-A-Chip Devices , Erythrocytes , Machine Learning
5.
Am J Physiol Lung Cell Mol Physiol ; 325(3): L327-L341, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37310760

ABSTRACT

Respiratory transfusion reactions represent some of the most severe adverse reactions related to receiving blood products. Of those, transfusion-related acute lung injury (TRALI) is associated with elevated morbidity and mortality. TRALI is characterized by severe lung injury associated with inflammation, pulmonary neutrophil infiltration, lung barrier leak, and increased interstitial and airspace edema that cause respiratory failure. Presently, there are few means of detecting TRALI beyond clinical definitions based on physical examination and vital signs or preventing/treating TRALI beyond supportive care with oxygen and positive pressure ventilation. Mechanistically, TRALI is thought to be mediated by the culmination of two successive proinflammatory hits, which typically comprise a recipient factor (1st hit-e.g., systemic inflammatory conditions) and a donor factor (2nd hit-e.g., blood products containing pathogenic antibodies or bioactive lipids). An emerging concept in TRALI research is the contribution of extracellular vesicles (EVs) in mediating the first and/or second hit in TRALI. EVs are small, subcellular, membrane-bound vesicles that circulate in donor and recipient blood. Injurious EVs may be released by immune or vascular cells during inflammation, by infectious bacteria, or in blood products during storage, and can target the lung upon systemic dissemination. This review assesses emerging concepts such as how EVs: 1) mediate TRALI, 2) represent targets for therapeutic intervention to prevent or treat TRALI, and 3) serve as biochemical biomarkers facilitating TRALI diagnosis and detection in at-risk patients.


Subject(s)
Lung Injury , Transfusion Reaction , Transfusion-Related Acute Lung Injury , Humans , Transfusion-Related Acute Lung Injury/etiology , Lung , Antibodies , Inflammation
6.
Front Physiol ; 14: 1165330, 2023.
Article in English | MEDLINE | ID: mdl-37324383

ABSTRACT

Background: Adenosine triphosphate (ATP) levels guide many aspects of the red blood cell (RBC) hypothermic storage lesions. As a result, efforts to improve the quality of hypothermic-stored red cell concentrates (RCCs) have largely centered around designing storage solutions to promote ATP retention. Considering reduced temperatures alone would diminish metabolism, and thereby enhance ATP retention, we evaluated: (a) whether the quality of stored blood is improved at -4°C relative to conventional 4°C storage, and (b) whether the addition of trehalose and PEG400 can enhance these improvements. Study Design and Methods: Ten CPD/SAGM leukoreduced RCCs were pooled, split, and resuspended in a next-generation storage solution (i.e., PAG3M) supplemented with 0-165 mM of trehalose or 0-165 mM of PEG400. In a separate subset of samples, mannitol was removed at equimolar concentrations to achieve a fixed osmolarity between the additive and non-additive groups. All samples were stored at both 4°C and -4°C under a layer of paraffin oil to prevent ice formation. Results: PEG400 reduced hemolysis and increased deformability in -4°C-stored samples when used at a concentration of 110 mM. Reduced temperatures did indeed enhance ATP retention; however, in the absence of an additive, the characteristic storage-dependent decline in deformability and increase in hemolysis was exacerbated. The addition of trehalose enhanced this decline in deformability and hemolysis at -4°C; although, this was marginally alleviated by the osmolarity-adjustments. In contrast, outcomes with PEG400 were worsened by these osmolarity adjustments, but at no concentration, in the absence of these adjustments, was damage greater than the control. Discussion: Supercooled temperatures can allow for improved ATP retention; however, this does not translate into improved storage success. Additional work is necessary to further elucidate the mechanism of injury that progresses at these temperatures such that storage solutions can be designed which allow RBCs to benefit from this diminished rate of metabolic deterioration. The present study suggests that PEG400 could be an ideal component in these solutions.

7.
Annu Rev Biomed Eng ; 25: 333-362, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37104651

ABSTRACT

One of the greatest concerns in the subzero storage of cells, tissues, and organs is the ability to control the nucleation or recrystallization of ice. In nature, evidence of these processes, which aid in sustaining internal temperatures below the physiologic freezing point for extended periods of time, is apparent in freeze-avoidant and freeze-tolerant organisms. After decades of studying these proteins, we now have easily accessible compounds and materials capable of recapitulating the mechanisms seen in nature for biopreser-vation applications. The output from this burgeoning area of research can interact synergistically with other novel developments in the field of cryobiology, making it an opportune time for a review on this topic.


Subject(s)
Antifreeze Proteins , Ice , Humans , Antifreeze Proteins/chemistry , Antifreeze Proteins/metabolism , Freezing , Temperature
8.
Transfusion ; 63(3): 601-609, 2023 03.
Article in English | MEDLINE | ID: mdl-36655728

ABSTRACT

BACKGROUND: Circulating CD71+ red blood cells (RBCs) have been reported to play an immunomodulatory role in vivo, which may contribute to adverse donor-recipient sex-mismatched transfusion outcomes. However, it is not clear how CD71+ RBC quantity in red cell concentrates (RCCs) is affected by manufacturing methods and donor factors such as donor sex, donor age, pre-donation hemoglobin (Hb), venous Hb (Hbv ) levels, and donation frequency. METHODS: We determined CD71+ RBCs and Hb levels in whole blood (WB) from healthy donors (42 male/38 female). Using small-scale red cell filtration (RCF) and whole blood filtration (WBF) methods, leukoreduced RCCs were processed from WB samples (n = 6) and the CD71+ RBCs were determined at days 1, 7, and 28. We examined uni- and multivariate associations among CD71+ RBCs, donor factors, and manufacturing method. RESULTS: Male donors had a higher CD71+ RBC concentration than females (p < .001), especially male donors aged 17-50 years with 1 or 2 WB donations over the previous 12 months. Donors with a Hbv above 155 g/L had a higher CD71+ RBC concentration than an Hbv level below 140 g/L (p < .05). There was a positive correlation between pre-donation Hb and CD71+ RBC concentration (Pearson r = 0.41). WBF RCCs had a higher total number of CD71+ RBCs than RCF-produced RCCs on day 1 (p < .05). DISCUSSION: RCCs have variable numbers of CD71+ RBCs. This makes understanding the impact of donor factors and manufacturing methods on the immunomodulatory effect of CD71+ RBCs critical in exploring donor-recipient sex-mismatched transfusions.


Subject(s)
Erythrocytes , Transfusion Reaction , Female , Humans , Male , Blood Donors , Hemoglobins , Tissue Donors
9.
Transfusion ; 62(8): 1506-1510, 2022 08.
Article in English | MEDLINE | ID: mdl-35869790

ABSTRACT

BACKGROUND: Preparing small-dose red cell concentrates (RCCs) is a common practice for pediatric and neonatal transfusions. However, there is a lack of quality monitoring data to indicate that both the preparation and storage of small-dose RCCs does not alter in vitro red cell quality. The present study seeks to provide data to support this practice. MATERIALS AND METHODS: To evaluate quality of stored small aliquots, six ABO/Rh matched leukoreduced citrate phosphate-dextrose/saline-adenine-glucose-mannitol (LR CPD/SAGM) RCCs were pooled and split into 30 ml aliquots, 80 ml aliquots, and a standard 290 ml unit, with testing performed for up to 43 days post-collection. To evaluate the impact of irradiation on small-dose RCC preparation, a total of 48 independent LR CPD/SAGM RCCs were used (non-irradiated: n = 24; irradiated: n = 24). Aliquoting with/without irradiation was performed within 7 days of collection and baseline testing was performed within 24 h of aliquot production. RESULTS: Limited variability in hemolysis, mean cell volume, and extracellular potassium concentrations were seen between the different aliquot sizes throughout the 43-day storage period. Aliquot production did not accentuate damage based on any of these tested parameters in both the non-irradiated and irradiated subsets. A significant increase was seen in the potassium concentrations in the irradiated parent and aliquot samples relative to their non-irradiated counterparts. CONCLUSIONS: Non-irradiated small-aliquot dose RCCs meet in vitro quality criteria required for safe transfusion throughout the 42-day storage period. The same can be said for aliquots derived from irradiated units and tested within 24 h of aliquot production.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Blood Preservation , Child , Erythrocytes/radiation effects , Gamma Rays , Hemolysis , Humans , Infant, Newborn , Potassium , Time Factors
10.
Cryobiology ; 106: 160-163, 2022 06.
Article in English | MEDLINE | ID: mdl-35413361

ABSTRACT

Dimethyl sulphoxide (DMSO) used in haematopoietic stem cell (HSC) cryopreservation has been linked to an increased incidence of adverse reactions following transplantation. In the interest of reducing the required DMSO concentrations, we have evaluated the use of unilamellar liposomes to internalize the non-toxic, cell-impermeable disaccharide, trehalose into HSCs and characterized the cryoprotective efficacy of this strategy. A fluorescent marker, 5(6)-carboxyfluorescein (200 µmol/L), was used for trehalose internalization following a 5 h incubation at 37 °C with liposome concentrations ranging from 0.5 mM to 4 mM. Cells were frozen (1 °C/min to -80 °C) following treatment with either 3 mM or 4 mM of liposomes (5 h, 37 °C) containing 0.2 mol/L trehalose either in the presence or absence of 0.2 mol/L extracellular trehalose. Increasing the liposome concentration from 3 mM to 4 mM corresponded to a significant (p = 0.046) increase in the mean fluorescent intensity (MFI) (3 mM 512 ± 7.07; 4 mM: 916 ± 28.3). Post-thaw membrane integrity indicated that the presence of trehalose both inside and outside when internalized using a liposome concentration of 4 mM significantly improved survival relative to the sole presence of extracellular trehalose (p = 0.02). However, viability was diminished relative to a standard DMSO control (trehalose: 32.5% ± 1.7%; DMSO: 85.0% ± 4.6%). This study confirms that the protective efficacy of trehalose is enhanced when it is present on both sides of the membrane; however, it reinforces concerns surrounding the efficiency of using liposomes as a vehicle to transfer trehalose into cells.


Subject(s)
Hematopoietic Stem Cells , Trehalose , Cell Line , Cell Survival , Cryopreservation/methods , Cryoprotective Agents/metabolism , Cryoprotective Agents/pharmacology , Dimethyl Sulfoxide/pharmacology , Humans , Liposomes , Trehalose/metabolism , Trehalose/pharmacology
11.
Transfusion ; 62(4): 751-757, 2022 04.
Article in English | MEDLINE | ID: mdl-35098538

ABSTRACT

BACKGROUND: Gamma irradiation of red cell concentrates (RCCs) is regularly used to prevent transfusion-associated graft-versus-host disease (TA-GvHD) in at-risk patients. While studies have indicated that irradiated RCCs exhibit increased hemolysis, there have been no efforts to differentiate between free- and microvesicle (MV)-bound hemoglobin (Hb). As an increase in the proportion of free-Hb in irradiated RCCs could alter vascular function, we sought to characterize differences in the state of extracellular Hb based on the timing of irradiation. STUDY DESIGN AND METHODS: Four separate pools of seven CPD/SAGM leukoreduced RCCs were produced and split into four sets of seven identical units. The units from each set were subject to irradiation (25 Gy) at six different points during storage, with one unit serving as a nonirradiated control. All testing was performed immediately following unit expiry on day 43. RESULTS: The earlier in storage that units were irradiated, the higher the hemolysis and the lower the proportion of MV-bound Hb. Units irradiated earlier in storage (1-8 days post collection) additionally had lower membrane rigidity (KEI ), lower mean corpuscular Hb concentrations (MCHC), and higher mean corpuscular fragility (MCF). Morphology indices, mean cell volume (MCV), mean corpuscular Hb (MCH), phosphatidylserine (PS) expression, as well as MV production and size did not however differ significantly between groups based on the timing of irradiation. CONCLUSIONS: Our findings indicate that irradiation timing can alter the state of extracellular Hb, with "early" irradiation promoting an increased proportion of cell-free Hb as well as mechanical damage to the RBC membrane.


Subject(s)
Blood Preservation , Potassium , Erythrocytes/metabolism , Gamma Rays , Hemoglobins/metabolism , Hemolysis , Humans
13.
Cryobiology ; 102: 15-26, 2021 10.
Article in English | MEDLINE | ID: mdl-33905707

ABSTRACT

In recent years there have been several advancements in organ preservation that have yet to see widespread clinical translation. While static cold storage (SCS) at 2 °C-4 °C continues to be the state-of-the-art strategy, it contributes to the current shortage of transplantable organs due to the limited preservation times it affords combined with the limited ability of marginal grafts to tolerate SCS. The era of optimizing storage solutions to minimize SCS-induced hypothermic injury has largely plateaued in its improvements, resulting in a shift towards the use of machine perfusion systems to provide continuous metabolic support, or the use of sub-zero storage temperatures to leverage the protection brought forth by a reduction in metabolic demand. Many of the rigors that organs are subjected to at low sub-zero temperatures (-80 °C to -196 °C) commonly used for mammalian cell preservation have yet to be surmounted, and therefore the focus of this article lies on an intermediate range of storage temperatures (0 °C to -20 °C) where much success has been seen in the past two decades. Numerous mechanisms leveraged by organisms capable of withstanding prolonged periods at these temperatures through either avoiding or tolerating the formation of ice has provided a foundation for some of the more promising efforts, and thus we aim to contextualize the translation of these nature-derived strategies to mammalian organ preservation.


Subject(s)
Organ Preservation Solutions , Organ Preservation , Animals , Cold Temperature , Cryopreservation/methods , Perfusion
14.
Cryobiology ; 97: 123-130, 2020 12.
Article in English | MEDLINE | ID: mdl-33007287

ABSTRACT

To promote the recovery of cells that undergo intracellular ice formation (IIF), it is imperative that the recrystallization of intracellular ice is minimized. Hepatocytes are more prone to IIF than most mammalian cells, and thus we assessed the ability of novel small molecule carbohydrate-based ice recrystallization inhibitors (IRIs) to permeate and function within hepatocytes. HepG2 monolayers were treated with N-(4-chlorophenyl)-d-gluconamide (IRI 1), N-(2-fluorophenyl)-d-gluconamide (IRI 2), or para-methoxyphenyl-ß-D-glycoside (IRI 3) and fluorescent cryomicroscopy was used for real time visualization of intracellular ice recrystallization. Both IRI 2 and IRI 3 reduced rates of intracellular recrystallization, whereas IRI 1 did not. IRI 2 and IRI 3, however, demonstrated a marked reduction in efficiency in the presence of the most frequently used permeating cryoprotectants (CPAs): glycerol, propylene glycol (PG), dimethyl sulfoxide (DMSO), and ethylene glycol (EG). Nevertheless, IRI 3 reduced rates of intracellular recrystallization relative to CPA-only controls in the presence of glycerol, PG, and DMSO. Interestingly, IRI preparation in trehalose, a commonly used non-permeating CPA, did not impact the activity of IRI 3. However, trehalose did increase the activity of IRI 1 while decreasing that of IRI 2. While this study suggests that each of these compounds could prove relevant in hepatocyte cryopreservation protocols where IIF would be prominent, CPA-mediated modulation of intracellular IRI activity is apparent and warrants further investigation.


Subject(s)
Cryopreservation , Hepatocytes , Ice , Cryopreservation/methods , Cryoprotective Agents/pharmacology , Dimethyl Sulfoxide , Ethylene Glycol , Hep G2 Cells , Humans
15.
Cryobiology ; 97: 217-221, 2020 12.
Article in English | MEDLINE | ID: mdl-33031823

ABSTRACT

Immediate post-thaw evaluation of membrane integrity has proven to yield overestimates of cell survival under conditions that preclude intracellular ice formation (IIF). However, prominent theories on the mechanisms of intracellular nucleation suggest a damaged membrane can reseal, prompting us to evaluate whether immediate post-thaw assessments of membrane integrity can in fact underestimate cell survival under conditions that promote IIF. HUVEC and HepG2 monolayers were treated with 1.4 M DMSO and frozen to -25 °C under conditions that formed either 0% or 100% IIF. Membrane integrity was evaluated both immediately and 24 h post-thaw, with metabolic activity assessments performed 24 h post-thaw as a secondary measure of survival. Treatment with 1.4 M DMSO and nucleation of 100% IIF resulted in a drastic increase in the relative percent of membrane intact cells following a 24 h culture period (HUVEC: 90.2% ± 0.7%; HepG2: 70.4% ± 4.0%), which correlated with 24 h post-thaw metabolic activity. These differences between the immediate and 24 h post-thaw membrane integrity assessments were significantly more than those seen in the absence of either IIF or DMSO treatment. Therefore, a high incidence of IIF in DMSO-treated monolayers may lead to erroneous underestimates of cell survival when conducting immediate post-thaw assessments of membrane integrity.


Subject(s)
Dimethyl Sulfoxide , Ice , Cell Membrane , Cryopreservation/methods , Cryoprotective Agents/pharmacology , Dimethyl Sulfoxide/pharmacology , Endothelial Cells , Freezing , Hep G2 Cells , Hepatocytes , Human Umbilical Vein Endothelial Cells , Humans
16.
Cryobiology ; 97: 250-253, 2020 12.
Article in English | MEDLINE | ID: mdl-32986987

ABSTRACT

Minimizing ice recrystallization injury in tissues and organs has historically been sought using biological antifreeze proteins. However, the size of these compounds can limit permeation and their potential immunogenicity disqualifies them from use in several cryopreservation applications. Novel small molecule carbohydrate-derived ice recrystallization inhibitors (IRIs) are not subject to these constraints, and thus we sought to evaluate the ability of a highly active IRI to permeate liver tissue and control recrystallization. Rat liver tissue blocks (0.5 mm2) were incubated with the IRI for 6 h at 22 °C and subsequently plunged in liquid nitrogen. Ice crystals within the tissue were fixed using a formal acetic alcohol fixative as it was rewarmed from -80 °C to 22 °C over the course of 48 h. The untreated control demonstrated a gradient of increasing crystal size from the exterior to the interior region of the tissue; however, the IRI-treated condition had no such gradient and exhibited small crystals throughout. Threshold segmentation confirmed a significant reduction in the ice crystal size within the interior region of the IRI-treated condition, suggesting the IRI permeated throughout and effectively controlled recrystallization within the tissue.


Subject(s)
Cryopreservation , Ice , Animals , Antifreeze Proteins , Carbohydrates , Cryopreservation/methods , Crystallization , Liver , Rats
17.
Cryobiology ; 95: 116-122, 2020 08.
Article in English | MEDLINE | ID: mdl-32450134

ABSTRACT

While various fixation techniques for observing ice within tissues stored at high sub-zero temperatures currently exist, these techniques require either different fixative solution compositions when assessing different storage temperatures or alteration of the sample temperature to enable alcohol-water substitution. Therefore, high-subzero cryofixation (HSC), was developed to facilitate fixation at any temperature above -80 °C without sample temperature alteration. Rat liver sections (1 cm2) were frozen at a rate of -1 °C/min to -20 °C, stored for 1 h at -20 °C, and processed using classical freeze-substitution (FS) or HSC. FS samples were plunged in liquid nitrogen and held for 1 h before transfer to -80 °C methanol. After 1, 3, or 5 days of -80 °C storage, samples were placed in 3% glutaraldehyde on dry ice and allowed to sublimate. HSC samples were stored in HSC fixative at -20 °C for 1, 3, or 5 days prior to transfer to 4 °C. Tissue sections were paraffin embedded, sliced, and stained prior to quantification of ice size. HSC fixative permeation was linear with time and could be mathematically modelled to determine duration of fixation required for a given tissue depth. Ice grain size within the inner regions of 5 d samples was consistent between HSC and FS processing (p = 0.76); however, FS processing resulted in greater ice grains in the outer region of tissue. This differed significantly from HSC outer regions (p = 0.016) and FS inner regions (p = 0.038). No difference in ice size was observed between HSC inner and outer regions (p = 0.42). This work demonstrates that HSC can be utilized to observe ice formed within liver tissue stored at -20 °C. Unlike isothermal freeze fixation and freeze substitution alternatives, the low melting point of the HSC fixative enables its use at a variety of temperatures without alteration of sample temperature or fixative composition.


Subject(s)
Cryopreservation , Ice , Animals , Cryopreservation/methods , Freezing , Rats , Temperature , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...